更新时间2021-03-31 10:33:33
x→0,f(x)→∞;x→∞,f(x)→∞;极值点是极小点;
f'(x) = ( xe^x - e^x )/x^2 - k( 1 - 1/x )
= (e^x/x)( 1 - 1/x) - k( 1 - 1/x )
= (e^x/x - k )( 1 - 1/x ) = 0;
1 - 1/x = 0,驻点 x = 1;
f'(x) = [ ( xe^x - e^x )/x^2 ]( 1 - 1/x ) + (e^x/x - k )/x^2
f''(1) = ( e - e )( 1 - 1/1 ) + (e - k )/1 = e - k;
因为极值点是极小点,f''(1) = e - k ≥ 0;
k 的取值范围是 k ≤ e 。