更新时间2018-08-20 14:34:24
设f(x)=1+2x+3x²+4x³+……+nx^(n-1)
∫f(x)dx=∫[1+2x+3x²+4x³+……+nx^(n-1)]dx
=∫dx+∫2xdx+∫3x²dx+∫4x³dx+……+∫nx^(n-1)dx
=c+x+x²+x³+x⁴+……+xⁿ
=c+x(1-xⁿ)/(1-x)
f(x)=[c+x(1-xⁿ)/(1-x)]'=[x(1-xⁿ)/(1-x)]'
={[x^(n+1)-x]/(x-1)}'
={[(n+1)xⁿ-1](x-1)-[x^(n+1)-x]}/(x-1)²
=[nx^(n+1)-(n+1)xⁿ+1]/(1-x)²
这个应该有个公式