更新时间2022-05-30 08:48:04
设 f(x)=∑{[x^(4n+1)]/(4n+1)},则f(0)=0
f'(x)=∑{[x^(4n+1)]/(4n+1)]}'=∑x^(4x)
是等比数列,首项a(1)=x^4,公比q=x^4。
∴ f'(x)=(x^4)/(1-x^4)
(x^4)/(1-x^4)=-1+1/(1-x^4)
1/(1-x^4)=0.5[1/(1-x²)+1/(1+x²)]
1/(1-x²)=0.5[1/(1-x)+1/(1+x)]
f(x)=∫【x,0】(x^4)dx/(1-x^4)
=∫[-1+0.25/(1-x)+0.25/(1+x)+0.5/(1+x²)]dx
=-x-0.25ln|1-x|+0.25ln|1+x|+0.5arctanx