更新时间2022-05-11 17:37:45
曲线在切点的导数等于切线的斜率;
即 y' = 2ax + b,y'(-1) = -2a + b = 4;①
切点坐标代入曲线方程,a - b - 2 = 3,a - b = 5;②
① + ②,-a = 9,a = -9;b = a - 5 = -9 - 5 = -14;
曲线方程 y = -9x^2 - 14x - 2 。
切点坐标代入曲线方程,a - b - 2 = 3, b = a - 5;
在切点,ax^2 + bx - 2 = 4x + 7
将 b = a - 5 代入,ax^2 + ( a - 5 - 4 )x - 9 = 0
( ax - 9 )( x + 1 ) = 0
切线与曲线只交于一点,所以方程在 x = -1 有2个相等的根,即 ax - 9 = x + 1 = 0;
故 a * (-1) - 9 = 0,a = -9;
b = -9 - 5 = -14;
曲线方程 y = -9x^2 - 14x - 2 。