更新时间2022-02-26 21:21:17
[x→∞]lime^{[ln(1+3^n)]/n}=[x→∞]lime^{[1/(1+3^n)]*(ln3)*(3^n)/1}
当n→+∞时,ln(1+3ⁿ)→+∞,
[ln(1+3ⁿ)]/n属于0/0型,
用罗比塔法则变换。
n'=1
ln'(1+3ⁿ)=(1+3ⁿ)'/(1+3ⁿ)=(ln3)3ⁿ/(1+3ⁿ)
lim【n→+∞】e^{[ln(1+3ⁿ)]/n}
=e^lim【n→+∞】{[ln(1+3ⁿ)]/n}
=e^lim【n→+∞】[(ln3)3ⁿ/(1+3ⁿ)]
=e^(ln3)lim【n→+∞】[3ⁿ/(1+3ⁿ)]
=3